55 research outputs found

    Modeling international diffusion: Inferential benefits and methodological challenges, with an application to international tax competition

    Get PDF
    Although scholars recognize that time-series-cross-section data typically correlate across both time and space, they tend to model temporal dependence directly, often by lags of dependent variables, but to address spatial interdependence solely as a nuisance to be “corrected” by FGLS or to which to be “robust” in standard-error estimation (by PCSE). We explore the inferential benefits and methodological challenges of directly modeling international diffusion, one form of spatial dependence. To this end, we first identify two substantive classes of modern comparative-and-international-political-economy (C&IPE) theoretical models—(context-conditional) open-economy comparative political-economy (CPE) models and international political-economy (IPE) models, which imply diffusion (along with predecessors, closed-economy CPE and orthogonal open-economy CPE)—and then we evaluate the relative performance of three estimators—non-spatial OLS, spatial OLS, and spatial 2SLS—for analyzing empirical models corresponding to these two modern alternative theoretical visions from spatially interdependent data. Finally, we offer a substantive application of the spatial 2SLS approach in what we call a spatial error-correction model of international tax competition. -- Obwohl Wissenschaftler wissen, dass Zeitreihenquerschnittsdaten sowohl ĂŒber die Zeit als auch ĂŒber den Raum korreliert sind, neigen sie dazu, die zeitliche AbhĂ€ngigkeit direkt zu modellieren, z. B. durch ZeitabstĂ€nde der abhĂ€ngigen Variablen. Die rĂ€umliche AbhĂ€ngigkeit jedoch wird als ein Ärgernis angesehen, welches durch FGLS ‚korrigiert’ wird oder ‚robust’ gemacht wird in Standard- Abweichungs-SchĂ€tzungen (durch PCSE). Wir untersuchen methodologische Herausforderungen und die Nutzen fĂŒr Schlussfolgerungen aus einer direkten Modellierung internationaler Diffusion als einer Form der rĂ€umlichen AbhĂ€ngigkeit. Zu diesem Zweck identifizieren wir zuerst zwei inhaltliche Hauptklassen theoretischer Modelle der modernen ‚Vergleichenden und Internationalen Politischen Ökonomie“, nĂ€mlich Modelle der (kontextbezogenen) Vergleichenden Politischen Ökonomie Offener Volkwirtschaften und Modelle der Internationalen Politischen Ökonomie. Diese bilden Diffusion ab, ebenso wie die VorlĂ€ufermodelle der Vergleichenden Politischen Ökonomie geschlossener Volkswirtschaften und gegensĂ€tzlich offener Volkswirtschaften. Zweitens bewerten wir die relative Performanz von drei SchĂ€tzern – nicht-rĂ€umliche OLS, rĂ€umliche OLS und rĂ€umliche 2SLS. Schließlich wenden wir den Ansatz des rĂ€umlichen 2SLS in einem von uns so genannten ‚Spatial Error Correction’-Modell des internationalen Steuerwettbewerbs an.International Tax Competition,Panel Models,Policy Diffusion,Political Economy,Spatial Interdependence

    Appointing ministers to multiparty cabinets

    Get PDF
    How does intra-party competition affect governance in multiparty cabinets? For a long time scholars have recognized that intra-party competition and the strength of factions can affect governance through the selection of cabinet min- isters or through policy negotiations among coalition partners. Yet, there has been very little, if any, quantitative work to test these expectations, primar- ily due to lack of data that could either measure party cohesion or ministerial types. Using novel data on both accounts, this paper investigates how intra- party ideological cohesion affects ministerial appointments in four European countries with multiparty governments: Germany, the Netherlands, Sweden and Ireland. We make two important contributions in this paper. First, we pro- vide a theory of ministerial appointments predicting that when there is intra- party conflict over policy, more ideologically extreme ministers are appointed. This prediction holds even in multiparty cabinets, going against one’s expec- tations that more moderate ministers should be appointed in multiparty cab- inets Second, utilizing unique data on ministers’ background, we show that intra-party conflict predicts the appointments of ministers with more extreme policy preferences

    Network Selection and Path-Dependent Coevolution

    Get PDF
    Scholars have increasingly become aware that actors’ self-selection into networks (e.g., homophily) is an important determinant of network-tie formation. Such self-selection adds methodological complexity to the empirical evaluation of the effects of network ties on individual behavior. Moreover, the endogenous network formation implies that network-tie structures and actors’ behavior “coevolve” over time. Therefore, in longitudinal network studies, it is very crucial for scholars to understand the nature of coevolutionary dynamics in the data, in order to explain the network-formation and the behavioral-decision-making mechanisms accurately. In this project, we claim that one of the most important aspects of the coevolutionary dynamic is its connection with history dependence. By history dependence, we primarily focus on what Page (2006) defines as “phat” and path dependence. We first establish theoretically that systems with coevolution can easily generate multiple equilibria (i.e., the steady states of the system), using a simple Markov type-interaction model that allows for endogenous tie formation. The potential of multiple equilibria posits an important and very difficult empirical question--how sensitive are equilibrium distributions (over types) to the past states? More simply put, to what extent does history matter? What is at stake in this question is not trivial. If history matters for an equilibrium attained in the society, then we can also analyze the potential policy interventions that could change the path of the social process such that it would lead to a socially optimal equilibrium. As for the empirical strategy, we start with developing a discrete-time Markov model, combining a spatial-logit and p-star model to evaluate the empirical significance of coevolutionary dynamics in the data. The strength of this empirical approach is in its direct connection with the theoretical Markov interaction model, and can provide a foundation for developing statistical tests for history dependence generated by coevolution

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Interdependent Duration Models in Political Science

    No full text
    • 

    corecore